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Abstract
In the familiar concept of ray splitting, a ray incident on an interface splits
into reflected and transmitted rays. Tunnelling adds something new to ray
splitting: an incident Newtonian ray splits into a reflected Newtonian ray
and a transmitted ray with complex classical action—a ghost orbit. Using
novel periodic-orbit expansion techniques, we are able to compute explicitly
and analytically energy eigenvalues of an energy-scaling one-dimensional step
potential. Inclusion of all periodic orbits in our series expansions, in particular
a class of orbits called pure ghosts with imaginary classical action, makes our
formulae exact. We suggest an experiment that may be used to verify the
importance of pure ghosts.

PACS numbers: 03.65.Ge, 03.65.Xp

Ray splitting, a term coined by Couchman et al [1] in their investigation of acoustic and
quantal systems having sharp interfaces, is a venerable concept dating at least as far back as
the work of Snell [2] on the reflection and transmission of light rays at an air–water interface.
In the quantum mechanical context, ray splitting has important consequences such as addition
of a universal ray-splitting correction term to the density of states [3] and production of non-
Newtonian periodic orbits. Both the importance of non-Newtonian orbits and the universal
ray-splitting correction have been confirmed in recent microwave experiments with dielectric
inserts [4, 5].

To illustrate the concept of non-Newtonian classical orbits, consider a classical particle
with energy E > V0 in the one-dimensional potential V (x) shown in figure 1. According to
Newtonian mechanics, the particle executes a periodic motion between the walls L and R of
the potential V (x) represented by the periodic orbit P1 in figure 1. However, for the exact
quantal description of the particle, the orbits P2 and P3 are equally important. It was shown
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Figure 1. Step potential V (x) illustrating various types of classical periodic orbits contributing to
the quantal dynamics of a particle in V (x). P1: Newtonian orbit bouncing between the potential
walls L and R; P2, P3: non-Newtonian above-barrier reflection orbits; P4: Newtonian orbit for
E < V0, bouncing between potential wall L and the potential step at x = a; P5: complex action
ghost orbit for E < V0 bouncing between potential walls L and R; P6: ‘pure ghost’ with purely
imaginary action bouncing entirely below the potential barrier V0.

both experimentally [4] and theoretically [6, 7] that P2 and P3 are ‘real’ in the sense that
they, too, produce clear peaks in the Fourier transform of the level density. Because P2 and
P3 do not exist in Newtonian mechanics, they are called non-Newtonian orbits [4]. Though
non-Newtonian, P2 and P3 are, nevertheless, proper classical orbits in the following sense.
The reflection amplitude r for a quantum particle of energy E incident on a potential step of
height V0 is

r =
√

E − √
E − V0√

E +
√

E − V0

. (1)

Because h̄ does not appear in (1), r is a classical quantity: even in the classical limit of h̄ → 0,
and even though E > V0, the reflection amplitude stays finite. Therefore, in order to be exact,
a periodic-orbit expansion technique must include the classical, but non-Newtonian, orbits
P2 and P3. It was shown recently [8, 9] that exact, explicit quantization formulae for the
above-barrier (E > V0) energy spectrum of the potential shown in figure 1 are obtained by
including P2 and P3 as well as all periodic orbits and their repetitions that can be constructed
by combining P2 and P3.

Direct, exact periodic-orbit expansions of individual energy levels [8, 9] is a new direction
in quantum mechanics. This letter presents the first exact, explicit periodic-orbit expansions
of energy levels in the tunnelling regime E < V0. In this regime, Newtonian mechanics allows
for the existence of a single classical orbit, called P4 in figure 1. On it a particle bounces
between the potential wall L and the potential step at x = a. We find that to obtain exact
energy formulae it is necessary to include in the periodic-orbit expansions the so-called ghost
orbits [10], which are (partially) under-barrier orbits having complex classical action. Ghost
orbits have already been seen in atomic physics experiments [11, 12]. Examples of ghost
orbits in figure 1 are P5 and P6.

Ghost orbits lead to a new type of ray splitting whereby a Newtonian ray incident on the
barrier splits into a reflected Newtonian ray with real action and a transmitted ghost ray with
imaginary action.
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Combining a Newtonian section (0 < x < a) with real classical action and a non-
Newtonian section (a < x < b) with imaginary action, the total action of P5 is complex, so
in analogy to nomenclature used in the contemporary literature [10], it is a ghost orbit. We
will show that even the orbit P6, bouncing entirely under the barrier, is important for a proper
quantal description of a particle in V (x). Moreover, this orbit must be included to obtain
exact quantal formulae for the energy spectrum of a particle in V (x). Finally, we propose an
experimental scheme for measuring properties of P6 such as its imaginary action.

Our derivation of an explicit, exact expression for the spectrum of a quantal particle in
the potential of figure 1 focuses on the scaling case [8, 9] characterized by V0 = vE, where v

is a real number. Since this letter focuses on the tunnelling regime, we choose v > 1, which
corresponds to E < V0. The spectral equation of a quantal particle in this V (x) is

η sin(ka) cosh(ηkd) + cos(ka) sinh(ηkd) = 0, (2)

where d = b − a and η = √
v − 1. We denote the positive solutions of (2) by kn,

n = 1, 2, 3, . . . ; they define the energy spectrum according to En = h̄2k2
n

/
2M , where M

is the mass of the particle.
We define the staircase of the solutions kn of (2) by [13] N (χ) = ∑∞

n=1 θ(χ −χn), where
χ = ka, χn = kna, and θ(χ) = 0, for χ < 0, θ(χ) = 1/2 for χ = 0 and θ(χ) = 1, for
χ > 0. Based on the scattering quantization approach pioneered in [14, 15], we compute
N (χ) explicitly according to

N (χ) = −1

2
+

χ

π
+

φ(χ)

π
+

1

2π
Im Tr

∞∑
m=1

1

m
S2m(χ). (3)

The 2 × 2 scattering matrix in (3) is given by

S(χ) =
(

0 R(χ) eiχ

−eiχ 0

)
, (4)

where R(χ) = r[1 − r∗ exp(−2γχ)]/[1 − r exp(−2γχ)] and γ = ηd/a; r is the reflection
amplitude for b → ∞ that is given, according to (1), by r = [1 − iη]/[1 + iη]. The function
φ(χ) in (3) is

φ(χ) = arctan

[
1

η
tanh(γ χ)

]
. (5)

Noting that the solution χn, and only χn, is contained in the interval
[
ξ (−)
n = (

n − 1
2

)
π, ξ (+)

n =(
n + 1

2

)
π

]
, we have∫ ξ

(+)
n

ξ
(−)
n

N (χ) dχ = (n − 1)
[
χn − ξ (−)

n

]
+ n

[
ξ (+)
n − χn

]
, (6)

which can be solved for χn, with the result

χn = nπ − φn

π
− 1

π
Im

∞∑
m=1

(−1)m

m

∫ ξ
(+)
n

ξ
(−)
n

Rm(ξ) e2miξ dξ, (7)

where

φn =
∫ ξ

(+)
n

ξ
(−)
n

φ(χ) dχ = π arctan

(
1

η

)
+ Im

∞∑
m=1

rm

m2γ
e−2nmγπ sinh(mγπ). (8)

To check our algebra, we compared χ(ana)
n computed with equation (7) with χ(num)

n computed
by direct numerical solution of equation (2) for n = 1, . . . , 100 and many different choices
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Figure 2. Full line: scaling function gη(q) used for extracting the reduced action of pure
ghosts from numerical or experimental spectral data. Dashed line: regularized Fourier transform
f (N)(σ = qγ ) for N = 30.

of v and the ratio a/b. We found that in all cases,
∣∣χ(ana)

n − χ(num)
n

∣∣ can be made as small
as desired. Thus, our algebra is correct. It is important to emphasize here that equation (7)
does not define a procedure for obtaining improved computational speed; it was never meant
to be. Equation (7) is an intellectual advance: for the first time, bound-state energy levels are
analytically calculated exactly and explicitly for a scaling system in the tunnelling regime.

The explicit formula (7) allows for an interpretation in terms of periodic orbits, for which
figure 1 will be useful. Expanding R into a power series in r yields an expression that starts
with unity. Thus, we see that the leading term of the sum in (7) corresponds to the summation
of all possible Newtonian orbits of the type P4. The remaining terms correspond to all possible
ghost orbits of the type P5. Even the pure ghosts of the type P6 contribute decisively to the
explicit formula (7). We see this by inspecting equation (5), which can be expanded into a
power series over all pure ghosts whose actions are multiples of 2iγχ .

So far we computed energy levels χn in terms of periodic orbits. But the reverse procedure
works too. Given the spectrum {χn}∞n=1, the Fourier transformF(σ ) = ∑∞

n=1 cos(σχn) reveals
its periodic-orbit contents. F(σ ) consists of a picket fence of two-periodic peaks on a smooth
background. Peaks at σ = ±2,±4, . . . are signatures of the Newtonian orbit P4 and its
repetitions, and of ghost orbits of type P5 and their repetitions. The smooth background
in F is due to the imaginary parts of the complex actions of the ghost orbits of types P5

and P6. Of particular importance is a peak at σ = 0, which corresponds to the pure ghost
P6 and its repetitions. The smooth part of the peak at σ = 0 is given by the regularized
Fourier transform f (σ) = F(σ ) − δ(σ ) + 1/2, valid in the vicinity of σ = 0. It is given
explicitly by πf (σ) = ∫ ∞

0 φ′(χ) cos(σχ) dχ . Equation (5) implies that f (σ) scales in σ/γ ,
i.e. f (σ) = gη(σ/γ ). The scaling function gη is shown as the full line in figure 2 for v = 1.02.
Its full width at half maximum is denoted by 
η. We discuss now how the scaling property
can be turned into a method for the experimental extraction of ghost-orbit information.

We propose to study experimentally the properties of non-Newtonian ghost orbits with
a quasi-one-dimensional (q1D) dielectric-loaded microwave cavity shown schematically
in figure 3. The dielectric-filled region I (0 < x < a) is assumed to have relative
electric permittivity κe = ε/ε0 > 1 and relative magnetic permeability κm = 1; vacuum
(c2µ0ε0 = κe = κm = 1) or air (κe � κm � 1) fills region II (a < x < b). The setup shown
in figure 3 allows experimental implementation of the Schrödinger equation for a quantal
particle in the potential V (x) of figure 1. Both the cavity height H and cavity width W are
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Figure 3. Sketch of the proposed quasi-one-dimensional microwave setup for extracting ghost-
orbit information from experimental resonance spectra. Coupling the width W of the cavity to the
microwave frequency ω allows scaled spectra to be taken in the tunnelling regime.

assumed to be small compared to the cavity length b, such that

H � cπ

ω
√

κe
< W <

2πc

ω
√

κe
(9)

for all operating frequencies ω of interest. In this case, the oscillating modes of the cavity are
transverse magnetic modes of the type TMn10, n = 1, 2, . . . , where n is the mode index in the
x-direction, the index ‘1’ indicates that only the first mode is excited in the y-direction and
the index ‘0’ means that the electric field E(n)

z (x, y) of the TMn10 cavity mode is independent
of z. Thus, E(n)

z (x, y) = ψn(x) sin(πy/W). Since E(n)
z (x, y) satisfies [� + κeω

2/c2]Ez = 0
[16], we have

ψ ′′
n (x) −

( π

W

)2
ψn(x) +

κeω
2

c2
ψn(x) = 0. (10)

If we now assume that the width W of the cavity is coupled to the cavity frequency via
W = s/ω, where s is a constant, (10) turns into an energy-scaling problem of the scaling
Schrödinger type considered above. Thus, the potential shown in figure 1 is experimentally
realizable and is, therefore, more than an academic problem. Indeed, defining E =
ω2[κe − (πc/s)2]/c2, we obtain −ψ ′′

n (x) = Enψn(x) in region I and −ψ ′′
n (x) + vEnψn(x) =

Enψn(x) in region II, where v = (κe − 1)/[κe − (πc/s)2]. Proper adjustment of s allows
realization of the cases v < 1 (above-barrier case), v = 1 (degenerate case) and v > 1
(below-barrier, tunnelling case). In the tunnelling case, e.g., together with (9), we have
πc/

√
κe < s < min(πc, 2πc/

√
κe). At a frequency of 1 GHz and κe ≈ 2, this implies

10 cm < W < 15 cm, a convenient dimension for experimental work.
The q1D cavity setup shown in figure 3 can be used (i) to verify the importance of ghost

orbits and (ii) to extract experimentally the reduced action Ŝ6 = S6/(2iχ) = γ of the pure
ghost P6 from a measured sequence χ1, χ2, . . . , χN of scaled resonance frequencies. From
N measured frequencies, we may construct the finite-N approximation of the regularized
Fourier transform f (σ) according to f (N)(σ ) = ∑N

n=1[cos(σχn) − cos(σnπ)]u(χn), where
u(χ) is a weight function which suppresses the Gibbs phenomenon [4, 5]. Fitting gη(σ/γ )

to f (N)(σ ), the experimental value for the reduced action of the pure ghost P6 is given by

γ (exp) = 
N/
η. (11)

Surprisingly few states are needed for extracting 
N . The dashed line in figure 2 plots f (N)

using χn values obtained numerically for v = 1.02 with a/b = 3/4, u(χ) = cos2[(π/2)χ/χN ]
and N = 30. Figure 2 shows that there is no problem to extract 
N from this plot. The dip
at σ = 0 becomes narrower for larger N. As shown in figure 2, it does not limit our ability to
extract 
N .
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The setup we propose resembles the quasi-two-dimensional (q2D) cavity setups pioneered
by Stöckmann and Stein [17] and now routinely used for the microwave investigations of
2D quantum chaos; see e.g. [4, 5, 18–20]. However, ours differs in one crucial respect: the
width W must be variable because q1D microwave spectra are not naturally scaling for a
cavity with fixed dimensions, whereas the spectra of q2D cavities are scaling [3]. Though a
cavity with variable side length has been used to measure parametric correlations of energy
levels in a Sinai ray-splitting billiard [21], the variable dimension we propose introduces the
complication of keeping the width of a dielectric insert equal to the cavity width W . A liquid
dielectric could solve this problem and afford an additional advantage: use of mixtures of
liquids would allow κe to be adjusted continuously.

Although one dimensional, our system is not trivial. According to figure 1, contributing
periodic orbits can be enumerated with the help of a binary ‘L,R’ code [22]. The number
of binary code words of length B is 2B . Thus, the number of periodic orbits contributing
to (7) grows exponentially. New in our system is that the ‘lion’s share’ of the exponentially
proliferating orbits are orbits with complex action (ghost orbits). We note that although an
infinite number of exponentially proliferating periodic orbits have to be summed, the sum
nevertheless converges to the correct results for the energy levels χn [23].

There are essentially two ways to treat tunnelling semiclassically: the method of complex
time and the method of complex phase space. The former leads to the theory of instantons
[24], which, at this point, is not developed far enough to yield explicit, exact spectral formulae
in the tunnelling regime. We opted for the latter method, which leads to classical paths with
complex actions, i.e. ghost orbits. But in contrast to semiclassical methods, we emphasize
that our method is exact. It provides us with exact periodic-orbit expansions of individual
energy eigenvalues in the tunnelling regime.

In summary, we report several innovations: (i) a new type of ray splitting involving ghost
rays; (ii) direct, exact periodic-orbit expansions of energy levels in the tunnelling regime;
(iii) a proposed new dielectric-loaded cavity setup for taking scaled energy spectra; and
(iv) a scheme for an experimental test of the manifestations of ‘pure ghosts’.

Although this letter focuses on the case of a single, scaling step potential, we have recently
constructed explicit, analytical solutions for scaling δ-function potentials and piecewise
constant scaling potentials consisting of several steps [23]. Moreover, although we have not
actually written them out explicitly, we are able to prove that exact periodic-orbit expansions
exist for a class of piecewise constant scaling potentials with an arbitrary number of steps as
long as their spectral equations satisfy a certain ‘regularity condition’ [8, 9, 23]. A technique
called the ‘m-scheme’ in [9] may be used to overcome this restriction and serve as a basis for
providing a proof for the existence of exact periodic-orbit expansions for the spectra of all
piecewise constant scaling potentials.

Let us mention in closing that the spectral equation (2) is a transcendental equation that
can be written as an exponential sum [25] with complex arguments. Thus, the formulae
for explicit solutions in the tunnelling regime presented in this letter, together with earlier
results in the above-barrier regime [8, 9], coupled with our recent advances [23], are the
beginning of a systematic theory for the explicit, analytical calculation of the zeros of
exponential sums.
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